
Contents

1 Overview 1

2 Basic Partitioning Features 3

2.1 Distribution of Arrays : 3

2.2 The Local Independent Do Loop : 4

2.2.1 Home of Iterations : 4

2.2.2 Scalar Variables : 5

2.2.3 Simple Reductions : 5

2.2.4 Position Reductions : 6

2.3 Moving Distributed Data : 6

2.4 Scalar Code : 7

2.4.1 Scalar Expressions : 7

2.4.2 Scalar Assignments : 7

2.5 Example Program : 8

3 Layout of Arrays 9

3.1 Explicit Distributions : 9

3.1.1 Replicated Arrays : 9

3.1.2 Distributed Arrays : 10

3.1.3 Host Arrays : 10

3.2 Indirect Distributions : 11

3.3 Common Blocks and Sequence Association : : : : : : : : : : : : : : : 12

3.3.1 Distributed Arrays in Common Blocks : : : : : : : : : : : : : 12

3.3.2 Sequence Association : 12

3.4 Default Distributions : 12

4 Data Movement with Array Sections 13

4.1 Array Sections and Constructors : 13

4.2 Primitive Array Assignments : 14

4.3 Moving Sections of Distributed Arrays : : : : : : : : : : : : : : : : : 15

4.4 Replication of a Section of a Distributed Array : : : : : : : : : : : : : 16

4.5 Moving Host Arrays : 16

1

5 Data Movement with Intrinsics 17

5.1 Circular Shifting : 17

5.2 Transpose : 17

5.3 Indirect Addressing : 17

5.3.1 Gathering of Data : 18

5.3.2 Scattering of Data : 19

6 Overlapping of Arrays 20

6.1 De�nition of an Overlap Area : 20

6.2 Use of Arrays with Overlapping : 20

7 Array Statements 21

7.1 Local Array Assignments : 21

7.2 Array Assignments with Communication : : : : : : : : : : : : : : : : 22

8 The WHERE Statement 23

9 The FORALL Statement 24

9.1 Syntax of the FORALL Statement : : : : : : : : : : : : : : : : : : : 24

9.2 Local FORALL Statement : 25

9.3 FORALL Statements with Communication : : : : : : : : : : : : : : : 25

9.4 FORALL Statements with Array Statements : : : : : : : : : : : : : : 26

10 Intrinsic Array Functions 26

10.1 Elemental Intrinsic Functions : 26

10.2 Reductions : 26

10.3 Shifting, Transpose : 27

10.4 Transformational Intrinsic Functions : : : : : : : : : : : : : : : : : : 27

11 Dynamic Arrays 27

11.1 Allocatable Arrays : 28

11.2 Automatic Arrays : 28

12 Random Numbers 28

13 Timing 29

2

14 I/O Operations 29

15 User Subprograms 30

15.1 Semantic of a User Subprogram : 30

15.2 Array Dummy Arguments of a Subprogram : : : : : : : : : : : : : : 31

15.3 Distributed Dummy Arguments of a Subprogram : : : : : : : : : : : 32

16 Pure Subprograms 32

16.1 Syntax and Constraints : 33

16.2 Use of Pure Subprograms : 33

16.3 Realization of Pure Subprograms : 34

17 External Subprograms 34

18 Example Program: Jacobi Iteration 35

18.1 Using Array Syntax : 35

18.2 Using FORALL Statements : 35

18.3 Using Overlapping : 36

3

ADAPTOR

Language Reference Manual

Version 1.0 (June 1993)

T. Brandes

Internal Report No. Adaptor 3

July 3, 1993

High Performance Computing Center

German National Research Institute for Computer Science

P. O. Box 1316

D-5205 Sankt Augustin 1

Federal Republic of Germany

Tel.: +49 (0)2241 / 14-2492

E-mail: Thomas.Brandes@gmd.de

ADAPTOR

Language Reference Manual

Version 1.0 (June 1993)

T. Brandes

German National Research Center for Computer Science,

P.O. Box 1316, D-5205 Sankt Augustin 1, FRG

Abstract

ADAPTOR (Automatic DAta Parallelism TranslatOR) is a tool that

transforms data parallel programs written in Fortran with array extensions,

parallel loops, and layout directives to parallel programs with explicit message

passing. The input language of Adaptor is a mix of Fortran 90, Connection

Machine Fortran and High Performance Fortran though not all features of

these languages are supported.

The generated message passing programs will run on di�erent multipro-

cessor systems with distributed memory, but also on shared or virtual shared

memory architectures.

In this paper the source language for Adaptor is described. It will be shown

which language extensions are supported by the tool to generate e�cient

parallel programs.

1 Overview

The Adaptor tool o�ers the possibility to write e�cient data parallel programs wi-

thout explicit message passing. This is realized by using the inherent parallelism of

array operations and/or parallel loops on arrays where the arrays are distributed

among the available processors. Necessary communication will be generated auto-

matically.

The source language of Adaptor is Fortran 77 with many features of Fortran 90,

Connection Machine Fortran (CMF) [Thi91] and High Performance Fortran (HPF)

[Hig93].

The following extensions of Fortran 90 can be used within Adaptor:

� array expressions and array assignments,

� intrinsic functions for arrays,

� dynamic arrays,

� new declaration statements,

1

� the binary operations <>, /=, ==, <=, <, >, and >= instead of .ne., .eq., .le.,

.lt., .gt., and .ge.,

� ending comments starting with !,

� semicolon ; for separating statements,

� using & for continuation lines.

As the tool has been designed originally to run CM Fortran programs on MIMD

architectures, the source language is strongly related to CM Fortran. The following

CMF features are supported:

� layout directives of CM Fortran,

� parallel random numbers,

� timing functions,

� global send and global get (scatter/gather operations),

� FORALL statement.

The following HPF features are supported:

� distribution directives of HPF,

� FORALL statement,

� PURE subprograms,

� some new intrinsic functions.

Some other features of Adaptor can also be used though these features are more

intended for internal use:

� independent loops with local access

� overlapping of arrays

Adaptor does not support all features of Fortran 90 and HPF. The most important

restrictions are:

� no modules,

� no pointer,

2

� no array-valued functions,

� no assumed-shaped arrays,

� only block distribution along one dimension,

� no explicit alignment (of course there is an implicit alignment for arrays that

are declared in the same way)

Adaptor is not a compiler but a source to source transformation that generates

Fortran 77 host and node programs with message passing. The new generated source

code has to be compiled by the compiler of the parallel machine. Therefore the

generated code will contain only features that are supported by this compiler.

In this way all extensions and directives supported by Adaptor that are not part of

Fortran 90 are translated to Fortran 77 with corresponding library calls. By setting

an option it is also possible to translate the code to a Fortran 90 program with

message passing.

2 Basic Partitioning Features

The best use of the parallel hardware will be given if the arrays of the data par-

allel program are distributed among the nodes and the node processors operate

simultaneously on the their local parts of the distributed arrays. Communication of

non-local data should be kept as minimal as possible.

The partitioning of a data parallel program consists of the following three tasks:

� distribution of arrays,

� distribution of parallel loop iterations,

� generation of communication for distributed data movements.

The translation strategy of Adaptor re
ects the idea that the whole code is executed

on every process, but array operations or parallel loops are distributed corresponding

to the data distribution. I/O statements are executed only by the host process.

2.1 Distribution of Arrays

A layout directive enables the user to specify the dimension of an array which should

be distributed. In the current version only block distribution along one dimension

is supported.

3

INTEGER a(100), b(100,n), c(100,n), x(10)

!HPF$ DISTRIBUTE a(BLOCK)

!HPF$ DISTRIBUTE b(*,BLOCK)

!HPF$ DISTRIBUTE c(BLOCK,*)

!HPF$ DISTRIBUTE x(*) ! replicated on all processors

The following example shows how arrays with 17 elements in the last dimension are

distributed onto 5 processors:

REAL a(17), b(10,17)

!HPF$ DISTRIBUTE a(BLOCK)

!HPF$ DISTRIBUTE b(*,BLOCK)

| a(1:3) | a(4:6) | a(7:10) | a(11:13) | a(14:17) |

| b(:,1:3) | b(:,4:6) | b(:,7:10) | b(:,11:13) | b(:,14:17) |

P(1) P(2) P(3) P(4) P(5)

2.2 The Local Independent Do Loop

With a local independent do loop it is possible to specify that all iterations of the

loop can be executed independently and no communication is necessary. This kind

of loop was mainly intended for internal representations within Adaptor as many

other kind of array statements and parallel loops will be translated internally to

such loops. In some situations however, it might be useful to use this kind of loop

at user level.

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 1, n

x(i) = a(i) * a(i)

d(i) = x(i) + c(i)

END DO

2.2.1 Home of Iterations

The �rst array variable on the left hand side of an assignment decides how the

iterations are distributed.

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 1, n

x(i) =

....

END DO

4

Iteration i is executed by the processor that owns the element x(i).

2.2.2 Scalar Variables

Scalar variables can be de�ned within a local independent do loop. The semantic

is that every processor uses its own incarnation of the variable. But if a replicated

variable is de�ned within the loop, the value will be unde�ned after all iterations.

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 1, n

s = ...

x(i) = x(i) * s

END DO

2.2.3 Simple Reductions

In many cases it is necessary to make a reduction in the parallel loop. This is

supported with the reduce statement. This statement can only appear in a local

independent do loop.

REDUCE (function, variable, expression)

At �rst, every processor makes the reduction for its own local iterations (local re-

duction). The reduction variable must be a replicated variable. After �nishing all

iterations a global reduction between all node processes is executed, the global value

of the reduction is available in the reduction variable on all nodes.

REAL a(n)

!HPF$ DISTRIBUTE a(BLOCK)

...

s = 0.0

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i=1,n

REDUCE (SUM, s, a(i))

END DO

Furthermore an array variable within the reduction expression is also considered to

�nd out the home of the iterations of a local independent loop.

The following reduction functions are avaialable:

� COUNT for logical values

� SUM, PRODUCT for integer, real or complex values

5

� ANY, ALL, PARITY for logical values

� IALL, IANY, IPARITY for integer values

� MINVAL, MAXVAL for real or integer values

2.2.4 Position Reductions

With the previous reductions it is impossible to determine the position of a minimum

or maximum. This can be done with some additional parameters in the REDUCE

statement.

REDUCE (pos_reduction, red_variable, red_expression,

pos_var1, pos_exp1,

...

pos_varn, pos_expn)

The semantic of this loop is that the position variables (replicated variables) will

have the values of the position expressions of the iteration where the minimum or

maximum value has been found.

The following parallel loop determines the minimum value and its position in the

two-dimensional array B.

REAL b(n,n), min

!HPF$ DISTRIBUTE b(*,BLOCK)

INTEGER i1, i2, imin1, imin2

...

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i2 = 1, n

DO i1 = 1, n

REDUCE (MINVAL, min, b(i1,i2), imin1, i1, imin2, i2)

END DO

END DO

2.3 Moving Distributed Data

A regular section of a distributed array can be assigned to another regular section

of any other distributed array. If this assignment needs communication, this will be

usually very fast.

REAL a(n,n), a1(n,n)

!HPF$ DISTRIBUTE a(*,BLOCK) :: a, a1

REAL g

6

a(1,1:n) = a(2,1:n) ! no communication

a(1:n,1) = a(1:n,2) ! fast communication

a(1:n-1,1:n-1) = a(2:n,2:n) ! fast communication

a(3:n,1:n-2) = a(1:n-2,3:n) ! fast communication

There are many other possibilities for moving distributed data e�ciently. This will

be discussed in section 4.

2.4 Scalar Code

Scalar assignments to a variable are executed by the processor that owns the de�ned

variable. For an assignment to a scalar variable the value of the scalar expression

has to be evaluated by all processors.

2.4.1 Scalar Expressions

A scalar expression will be evaluated by all processors, if the expression is used

� to evaluate the condition of control
ow statements (if conditions, loop condi-

tions, etc.),

� to assign a value to a replicated scalar variable.

These scalar expressions maz contain variable accesses to distributed and host arrays.

If a value of a scalar data is needed by every processor, this value will be broadcast

by the owner processor of this data. If the scalar data is a replicated variable, no

broadcast will be necessary as every processor performs the updates of a replicated

variable on its own.

REAL a(n)

!HPF$ DISTRIBUTE a(BLOCK)

REAL g

...

g = a(51) ! one node broadcasts the value

2.4.2 Scalar Assignments

A scalar assignment updates a scalar data. If this data is replicated, every processor

will perform its own update. If the data is distributed, only the owner of this data

will make the necessary update.

7

REAL a(n)

!HPF$ DISTRIBUTE a(BLOCK)

REAL g

a(5) = g ! only owner of a(5) makes the update

If the expression in the assignment contains accesses to elements of arrays that are

not located on the processor, communication will become necessary.

a(5) = a(5) + 1 ! update without communication

a(5) = a(8) ! one node sends a value to another node

It should be observed that scalar assignments with implicit communication are very

ine�cient as every single value is sent in one communication and the start-up time

is needed for every value.

2.5 Example Program

The following example program shows a typical data parallel program using the

discussed features.

PROGRAM prime

INTEGER n, s, k

PARAMETER (n=10000)

LOGICAL*1 a(n)

!HPF$ DISTRIBUTE a(BLOCK)

a(1) = .FALSE.

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 2, n

a(i) = .TRUE.

END DO

k = 2

DO WHILE (k*k <= n)

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = k*k, n, k

c all multiples of k are no primes

a(i) = .FALSE.

END DO

k = k + 1

DO WHILE (.NOT. a(k))

k = k + 1

END DO

END DO

s = 0

8

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 1, n

REDUCE (COUNT, s, a(i))

END DO

PRINT *, 'There are ',s,' primes until ', n

END

3 Layout of Arrays

In this section it is described how the variables of the data parallel program can be

distributed among the host and nodes for the parallel execution. As the distribution

of variables decides how many communication will be generated, it is an issue of

program optimization but not an issue of correctness.

The distribution or layout of variables is speci�ed by compiler directives very similar

to those used in CM Fortran or High Performance Fortran.

Scalar variables are always replicated. Arrays can be

� replicated (every processor has an own incarnation),

� distributed (distributed among all available node processors),

� host arrays (owner is the host process).

If an array is replicated or a host array, it will be called sequential. Data of a

sequential array is stored in the sequential order assumed by Fortran 77 semantic.

3.1 Explicit Distributions

3.1.1 Replicated Arrays

Usually array variables are distributed among the node processors to avoid high

memory overhead. In some cases, e.g. for small data arrays, it might be useful to

replicate them.

There are some possibilities to specify that an array is replicated. Directives from

CMF or HPF can be used.

INTEGER a(100), b(100,n)

CMF$ LAYOUT a(:REPLICATED), b(:REPLICATED)

INTEGER a(100), b(100,n)

CMF$ LAYOUT a(:SERIAL), b(:SERIAL,:SERIAL)

9

The SERIAL attribute must be given for every dimension. The REPLICATED attribute

is only required once.

INTEGER a(100), b(100,n)

!HPF$ DISTRIBUTE a (*)

!HPF$ DISTRIBUTE b (*,*)

If compared to CM Fortran, replicated arrays are not front end arrays. Every pro-

cessors has its own incarnation but the transformation guarantees that all instances

have always the same values at least at the synchronization points.

If the data parallel program has only replicated arrays, every processor will execute

all statements of the input program. There is only one exception: only one process

executes I/O operations and calls external subroutines.

3.1.2 Distributed Arrays

In the current version of the Adaptor tool array variables can only be distributed

along one dimension. For the distribution the block distribution is used. The next

version will also support cyclic distributions and two-dimensional distributions.

The following CMF layout or HPF distribution directives can be used to specify the

dimension of an array that is intended to be distributed:

INTEGER a(100), b(100,n), c(100,n)

CMF$ LAYOUT a(:NEWS), b(:SERIAL,:NEWS), c(:NEWS,:SERIAL)

INTEGER a(100), b(100,n), c(100,n)

!HPF$ DISTRIBUTE a(BLOCK)

!HPF$ DISTRIBUTE b(*,BLOCK)

!HPF$ DISTRIBUTE c(BLOCK,*)

3.1.3 Host Arrays

Host arrays have only one incarnation in the host program. The following reasons

tescribe the intention of a host array:

� an array is used in an external subroutine (e.g. for X-Windows),

� an array is used for input or output (input and output of distributed arrays is

not supported until now),

� an array that would be useful to be replicated does not �t in the memory of

the nodes (it can be transferred in blocks from host to nodes, using the virtual

memory of the host operating system).

10

The following layout directive declares an array to be a host array:

INTEGER ha(100), hb(100,n)

CMF$ LAYOUT a(:HOST), b(:HOST)

It should be mentioned that the HOST directive has to be speci�ed only once and

not for every dimension.

3.2 Indirect Distributions

Arrays can be aligned with templates. The distribution of the template implies the

distribution of the aligned arrays.

In the current version the alignment is not realized in the sense of CM Fortran

or High Performance Fortran. The alignment only decides which dimension will be

distributed. In which way the dimension is distributed depends only on the size of

the array.

The following examples shows a typical use of a template. If the distribution of the

template is changed (only one declaration), the distribution of all aligned arrays will

be changed.

!HPF$ TEMPLATE t (nqpx, nqpx, nkpx)

!HPF$ DISTRIBUTE t (*, *, block)

REAL*8 uo (5,nqpx,nqpx,nkpx)

REAL*8 u (5,nqpx,nqpx,nkpx)

REAL*8 up (5,nqpx,nqpx,nkpx)

REAL*8 fu (5,nqpx,nqpx,nkpx)

REAL*8 gu (5,nqpx,nqpx,nkpx)

REAL*8 hu (5,nqpx,nqpx,nkpx)

REAL*8 ku (5,nqpx,nqpx,nkpx)

REAL*8 tmp (nqpx,nqpx,nkpx)

REAL*8 tmp1 (nqpx,nqpx,nkpx)

!HPF$ ALIGN (*,:,:,:) WITH t(:,:,:) :: uo, u, up

!HPF$ ALIGN (*,i,j,k) WITH t(i,j,k) :: fu, gu, hu, ku

!HPF$ ALIGN (:,:,:) WITH t(:,:,:) :: tmp

!HPF$ ALIGN WITH t :: tmp1

If the distribution directive of the template is now changed to

!HPF$ DISTRIBUTE t (*, BLOCK, *)

all other arrays will be distributed along the second last dimension.

11

3.3 Common Blocks and Sequence Association

If an array is distributed the user can make no assumptions about sequence or

storage association of this array.

3.3.1 Distributed Arrays in Common Blocks

Arrays in common blocks can also be distributed like other arrays. If a common

block contains a distributed array, sequence association will not be guaranteed. Such

a common block is called nonsequential.

The following rules must apply for a nonsequential common block:

� Every occurrence of the COMMON block has exactly the same number of com-

ponents with each corresponding component having exactly the identical type,

identical shape and the same distribution.

� The de�nition of the COMMON block must have an occurrence in the main pro-

gram (used for initialization).

3.3.2 Sequence Association

For replicated arrays sequence association is guaranteed. Sequence association can

explicitly be speci�ed by the SEQUENCE directive for a COMMON block.

If sequence association is speci�ed, all arrays in the common block will have to be

replicated or will be replicated if no layout directive is speci�ed.

COMMON /data/ a(100), b(100,n)

!HPF$ SEQUENCE /data/

If no other layout for a and b is given, a and b will become replicated arrays. This

is also a kind of indirect distribution.

3.4 Default Distributions

If an array has not an explicit or indirect distribution, a default distribution will be

created for this array. At the moment the user can choose between three possibilities:

� Every array is replicated by default.

� Every array is distributed in the last dimension by default (this does not apply

for character arrays).

12

� Every array is distributed in the last dimension by default if it is used in an

array statement. The same rules as used in CM Fortran will be applied.

In the following example no distribution has been speci�ed for the arrays a and b,

respectively. If the rules of CM Fortran apply, array a is distributed and array b

becomes a replicated array.

PROGRAM simple

REAL a(100), b(100)

a = b(1)

END

4 Data Movement with Array Sections

In the next two sections it is described which kind of data movements are supported

by Adaptor in the sense that they are realized e�ciently.

In this section data movements on primitive array assignments are discussed.

4.1 Array Sections and Constructors

An array section is a subset of the elements in an array. An array section can be

referred to by using section selectors in place of a subscript speci�er in a reference

to an array. Section selectors and scalar subscripts can be mixed in references to

multi-dimensional arrays.

A section selector takes one of the following forms:

� Indexed section selector [begin]:[end][:stride]

� Vector-valued section selector that is an array expression that must represent

a 1-dimensional integer array whose elements index the selected positions in

the primary array

DIMENSION a(9), b(4,9), m(3)

...

a(1:5)

b(m,5)

b(1:3,:)

In some cases contiguous array sections are required. A section will be contiguous, if

all elements of the section are lying consecutively in memory.Therefore, a contiguous

array section is one in which the sections selectors

13

� are indexed with a stride of 1,

� appear to the left of any scalar subscripts,

� include every element of the dimensions except that the rightmost selector

(before any scalar subscripts) can truncate the dimension

DIMENSION a(4,9)

a(:,1:5) ! contiguous

a(1:3,2) ! contiguous

a(:,1:5:2) ! noncontiguous

a(3,1:5) ! noncontiguous

a(1:3,:) ! noncontiguous

An array value can be formed with an array constructor. In the current version an

array constructor can only be

� a range speci�er '['begin:end[:stride]']'.

An array constructor is always 1-dimensional.

4.2 Primitive Array Assignments

A primitive array assignment is an assignment in which the left-hand side of the

statement is an array or array section. The expression of the right-hand side of the

statement is a primary (array, array section, array constructor, scalar value). Both

arrays must be conformable.

Two arrays are conformable if they have the same shape. A scalar value is confor-

mable to any array.

a = b

a(1:n) = b(2:n+1)

a(1:n) = [2:n+1]

a(1:n) = a(5)

The expression of a primitive array assignment will be aligned with the array or

array section on the left hand side, if the assignment requires no communication.

REAL a(n), ha(n), ra(n)

REAL g

!HPF$ DISTRIBUTED a (BLOCK) ! a is distributed

CMF$ LAYOUT ha (:HOST) ! ha is host array

14

!HPF$ DISTRIBUTED ra (*) ! ra is replicated

a(1:n) = ra(1:n) ! aligned

ra(1:n) = a(1:n) ! not aligned

ra(2:n) = ra(1:n-1) ! aligned

a(2:n) = a(1:n-1) ! not aligned

ha(2:n) = ha(1:n-1) ! aligned

Due to di�erent possibilities of the layout of the array variables, di�erent kinds of

communications might be generated. At the moment not all primitive assignments

are allowed. The following rules should be observed, if the statement needs commu-

nication:

� No strides are allowed in sections of distributed arrays

� The sections of a host array or a replicated array must be contiguous

� The left and the right hand side must have the same type.

4.3 Moving Sections of Distributed Arrays

A regular section of a distributed array can be assigned to another regular section

of any other distributed array. If this assignment needs communication, this will be

usually very fast.

In the current version it is impossible to use strides in any data movement that

requires communication.

REAL a(n,n), a1(n,n)

!HPF$ DISTRIBUTE (*,BLOCK) :: A, A1

REAL g

a(1,1:n) = a(2,1:n) ! no communication

a(1:n,1) = a(1:n,2) ! communication

a(1,1:n:2) = a(2,1:n:2) ! no communication

a(1:n-1:2,:) = a(2:n:2,:) ! no communication

a(1:n-1,1:n-1) = a(2:n,2:n) ! communication

a(1:n,1) = a(n:1:-1,2) ! requires communication; but stride

! is not 1, so it is not allowed

15

4.4 Replication of a Section of a Distributed Array

In many cases it is necessary to replicate a section of a distributed array. This is

done by assigning this section to a replicated array.

The replicated array section on the left hand side of the assignment must be conti-

guous.

REAL a(n,n), ra(n,n), ra1(n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a

!HPF$ DISTRIBUTE (*) :: ra1

!HPF$ DISTRIBUTE (*,*) :: ra

INTEGER k

REAL g

ra = a ! replication of a whole distributed array

ra1 = a(k,1:n) ! replication of the k-th row of a

ra1 = a(1:n,k) ! replication of the k-th column of a

ra(1:n,1) = a(k,1:n) ! allowed, as ra(1:n,1) is contiguous

ra(1,1:n) = a(1:n,1) ! sorry, ra(1,1:n) is not contiguous

4.5 Moving Host Arrays

A primitive assignment with host arrays can be used to move data from host arrays

to distributed arrays on the nodes and vice versa.

The section of the host array must always be contiguous.

REAL a(n,n), ha(n,n), ra(n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a

!HPF$ DISTRIBUTE (*) :: ra

CMF$ LAYOUT ha (:HOST)

REAL g

ha = a ! distributed array is moved to host, efficient

ra = ha ! not allowed in the current version

ha = ra ! allowed, only executed by the host

ha(1:n,1) = a(1,1:n) ! allowed, as ha(1:n,1) is contiguous

ha(1,1:n) = a(1:n,1) ! sorry, ha(1,1:n) is not contiguous

16

5 Data Movement with Intrinsics

Array intrinsic functions are another possibility to exchange data between proces-

sors. In the current version only some functions are supported.

5.1 Circular Shifting

Adaptor supports circular shifting only for whole arrays. Source and target array

must have the same shape, both arrays must be sequential or distributed.

REAL b(m,n), g

!HPF$ DISTRIBUTE b(*,BLOCK) ! b is distributed

b = CSHIFT (b,1,1) ! no communication

b = CSHIFT (b,2,-1) ! efficient communication

The intrinsic function EOSHIFT is not supported.

5.2 Transpose

Adaptor supports the transposing of whole two-dimensional arrays. Source and tar-

get array must have the same shape, both arrays must be sequential or distributed.

REAL a(m,n), b(n,m)

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b

...

a = TRANSPOSE (b)

It should be mentioned that in some situations an implicit transpose is possible.

REAL a(m,n), b(m,n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a

!HPF$ DISTRIBUTE (BLOCK,*) :: b

...

a = b ! implicit transpose due to index switching

5.3 Indirect Addressing

In most cases it is necessary that the indexes of array sections are replicated. The

current version of Adaptor supports only one exception: the indexing with whole

distributed integer arrays.

17

REAL a(n), b(m) ! arrays are all

INTEGER p(n) ! distributed by default

b(p) = a ! global send

CALL GLOBAL_SEND (b,p,a) ! the same operation

a = b(p) ! global get

CALL GLOBAL_GET (a,b,p) ! the same operation

5.3.1 Gathering of Data

The following intrinsic subroutine is used to gather data from the array B:

CALL GLOBAL_GET (A, B, P1, ..., PN, MASK)

The MASK parameter is optional.

The following has to be observed:

� P1, ..., Pn must be integer arrays, where n is the rank of the array B. The

values of these arrays must be legal index values for the corresponding index

of B

� A, P1, ..., Pn and MASK must have the same rank, the same shape and the same

distribution.

� A and B must be of the same type, e.g. no implicit type conversion is done

here.

If k is the rank of the arrays A, P1, ..., Pn and MASK, and (low1:up1,...,lowk:upk)

the shape, the semantic of the global get operation will be described by the following

loop nesting:

DO j1 = low1, up1

DO j2 = low2, up2

...

DO jk = lowk, upk

IF (MASK(j1,...,jk) THEN

A(j1,j2,...,jk) = B(P1(j1,...,jk), ..., Pn(j1,...,jk))

END IF

END DO

...

END DO

END DO

18

5.3.2 Scattering of Data

The following intrinsic subroutine is used to scatter data from an array A to an

array B:

CALL GLOBAL_SEND (B, P1, ..., Pn, A, MASK, red_function)

The MASK parameter and the reduction function parameter are optional. If the re-

duction function is missing, the data of A will be copied into the array B, otherwise

the reduction function will be applied to the old element of B together with the new

one.

The allowed values for the reduction function are ALL, ANY, COUNT, IALL, IANY,

IPARITY, SUM, PRODUCT, PARITY, MINVAL and MAXVAL.

The following has to be observed:

� P1, ..., Pn must be integer arrays, where n is the rank of the array B. The

values of these arrays must be legal index values for the corresponding index

of B

� A, P1, ..., Pn and MASK must have the same rank, the same shape and the same

distribution.

� A and B must be of the same type, e.g. no implicit type conversion is done

here.

If k is the rank of the arrays A, P1, ..., Pn and MASK, and (low1:up1,...,lowk:upk)

the shape, the semantic of the global send operation can be described by the following

loop nesting:

DO j1 = low1, up1

DO j2 = low2, up2

...

DO jk = lowk, upk

IF (MASK(j1,...,jk) THEN

B(P1(j1,...,jk), ..., Pn(j1,...,jk)) =

& red_f (B(P1(j1,...,jk), ..., Pn(j1,...,jk)), A(j1,...,jk))

END IF

END DO

...

END DO

END DO

The semantic of the scatter intrinsic subroutine global send is very similar to the

array combining scatter functions XXX scatter of HPF [Hig93]. The main di�erence

is given by the fact that

19

� here a subroutine is used and not an intrinsic function,

� and the kind of reduction is speci�ed with a parameter and not with a pre�x

in the name of the operation.

6 Overlapping of Arrays

In local independent loops only local data can be used or de�ned. In some cases it

is very useful to de�ne arrays that have an overlap area. By this way local access to

neighbored elements is possible.

6.1 De�nition of an Overlap Area

REAL <array_name> ([low1:]up1 ['['left_overlap1:right_overlap1']'] ,

[low2:]up2 ['['left_overlap2:right_overlap2']'] ,

...

[lowk:]upk ['['left_overlapk:right_overlapk']'])

The values of the overlap speci�cations must be non-negative integer constants. The

values de�ne the size of the overlapping area. If no overlapping is speci�ed the values

will be assumed to be zero.

After the source to source translation has been made the size of the arrays will

correspondingly be extended to the overlap size.

REAL a(1:n[1:1],n[2:2])

c becomes

REAL a(0:n+1,-1:n+2)

6.2 Use of Arrays with Overlapping

The usage of arrays with overlap areas is limited to some cases. Arrays with an

overlap area can only be de�ned in a single assignment. In this case the local values

will be copied and the overlap area will be exchanged between the processes.

REAL a (n, n)

REAL ova (n[1:1],n[2:2])

!HPF$ DISTRIBUTE (BLOCK) :: a, ova

...

ova = a

20

Arrays with an overlap area can only be used in a local context. This means that

they can only be used within statements that will not require any communication.

REAL a (n, n)

REAL ova (n[1:1],n[2:2])

ova = a ! ova is copy of a with correct boundaries

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO j = 2, n-1

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 2, n-1

a(i,j) = ova(i-1,j) + ova(i+1,j) + ova(i,j-1) + ova(i,j+1)

END DO

END DO

If ova had not an overlap area, some of its values would not be local in the loop.

7 Array Statements

Adaptor supports array statements. Attention should be paid if communication is

necessary or not.

7.1 Local Array Assignments

An array assignment will be a local assignment if it needs no communication between

the di�erent processors.

REAL a(n), ha(n), ra(n)

REAL b(m,n)

REAL g

CMF$ LAYOUT a(:NEWS) ! a is distributed

CMF$ LAYOUT b(:NEWS,:SERIAL) ! b is distributed

CMF$ LAYOUT ha(:HOST) ! ha is a host array

CMF$ LAYOUT ra(:SERIAL) ! ra is a replicated array

ha = ra ! only executed by host

ha = ha + 1 ! local on host

ra = ra + 1 ! local on every node (no data parallelism)

a = ra ! local

c The following statements are executed on the nodes and take

c full advantage of the data parallelism

21

a = a * 2

a = a + b(:,4)

a = a + g

b = SPREAD (ra, 1, m)

Adaptor recognizes this kind of local operation and does not generate communica-

tion. As the operation is distributed corresponding to the distribution of the data

among the processors, these operations result in good speed-ups.

7.2 Array Assignments with Communication

In many cases array assignments need communication. In this case Adaptor splits up

the assignment in primitive array assignments with communication and local array

assignments.

REAL a(n), b(n), c(n)

!HPF$ DISTRIBUTE (BLOCK) :: a, b, c

a(1:k) = b(1:k) - c(k+1:n-k)

This array assignment is split into two statements, one data movement and a local

array assignment.

a(1:k) = c(k+1:n-k)

a(1:k) = b(1:k) - a(1:k)

For this example no temporary array is required. This might be unavoidable for

other array assignments.

a(2:n-1) = (b(1:n-2) + b(3:n)) * 0.5

This array assignment requires at least one temporary array.

tmp_a(2:n-1) = b(1:n-2)

a(2:n-1) = b(3:n)

a(2:n-1) = (tmp_a(2:n-1) + a(2:n-1)) * 0.5

The splitting of non-local assignments is a non-trivial task as not too many or too

big temporaries should be created. As this task has not been completely solved, it

might be possible that Adaptor has done this job not well. It is also possible that

Adaptor will fail to translate a complex statement with many array operations.

22

REAL a(n), ha(n), ra(n)

REAL g

CMF$ LAYOUT a(:NEWS) ! a is distributed

CMF$ LAYOUT ha(:HOST) ! ha is a host array

CMF$ LAYOUT ra(:SERIAL) ! ra is a replicated array

c this is not possible

a(51:71) = ra(49:69) - ha(25:45) * SUM (a(17:88))

c but

g = SUM(a(17:88))

a(51:71) = ra(49:69) - ha(25:45) * g

8 The WHERE Statement

The block WHERE statement is used to assign each element in an array assignment

conditionally.

The body of the block in the where statement must contain only array assignments.

It is not allowed to transfer control in a where block or end a do loop in a where

block. Where blocks cannot be nested.

WHERE (b .GT. 0.0)

a = s

ELSEWHERE

a = 0.0

ENDWHERE

Occasionally, some further restrictions are given for the current version of Adaptor:

� Variables within the mask of the where block can only be updated in the last

statement of the body,

� the mask should be aligned with every array or array section of the left hand

side of the assignments

REAL a(n,n), b(n,n), c(n)

!HPF$ DISTRIBUTE (*,BLOCK) :: a, b

!HPF$ DISTRIBUTE (BLOCK) :: c

c allowed, no communication necessary

WHERE (b(1,:) .GT. 0)

b(2,:) = b(3,:)

END WHERE

23

c allowed, no communication required for the mask

WHERE (b(1,:) .GT. 0)

b(2,:) = CSHIFT (c,1,1)

END WHERE

c not allowed as update of B not only in the last statement

WHERE (b(1,:) .GT. 0)

b(2,:) = b(3,:)

ELSEWHERE

b(2,:) = b(4,:) - 1.0

END WHERE

c not allowed as mask is not aligned with lhs of stmt

WHERE (b(:,1) .GT. 0)

b(:,2) = b(:,3)

END WHERE

9 The FORALL Statement

A FORALL statement reveals to a collection of assignments to designated array ele-

ments [Lov92, WSG92, ALS91, Thi91]. As all these assignments can be done simul-

taneously, it is a natural way to express parallelism.

9.1 Syntax of the FORALL Statement

The FORALL statement can be used for specifying an array assignment in terms of

array elements or array sections. It can be masked with a scalar logical expression.

FORALL (v1=l1:u1:s1, ..., vn=ln:un:sn [,mask])

& a(e1,...,em) = rhs

The parallelism of this assignment is given by the fact that the assignment can be

executed in any order.

The following constraints have to be observed:

� The assignment must not cause any element of the lhs-array to be assigned a

value more than once.

� The mask expression may depend on the subscript-names.

� Each of the subscript-names must appear within the subscript expression(s)

on the left-hand-side.

24

FORALL (i=1:n, j=1:n) h(i,j) = 1.0 / REAL(i+j-1)

FORALL (i=1:n, j=1:n, a(i,j) .NE. 0.0) b(i,j) = 1.0 / a(i,j)

The following statement is illegal as the subscript-name j does not appear on the

left hand side.

c FORALL (i=1:n, j=1:n) h(i) = h(i) + 1.0 / REAL(i+j-1)

9.2 Local FORALL Statement

The single assignments of a FORALL statement will be executed by the owner of the

left hand side in the assignment.

The FORALL statement will be local if it requires no communication. The following

ones are all local.

REAL h(n,n), a(n,n), b(n,n)

!HPF$ DISTRIBUTE (*,BLOCK) h, a, b

...

FORALL (i=1:n, j=1:n) h(i,j) = 1.0 / REAL(i+j-1)

FORALL (i=1:n, j=1:n, a(i,j) .NE. 0.0) b(i,j) = 1.0 / a(i,j)

Local FORALL statements will be translated directly to local independent loops.

At the moment Adaptor rejects local FORALL statements where the corresponding

do loop might have data
ow dependences.

REAL a(n,n)

!HPF$ DISTRIBUTE (*,*)

...

FORALL (i=1:n, j=2:n-1) a(i,j) = (a(i,j-1) + a(i,j+1)) * 0.5

9.3 FORALL Statements with Communication

In many cases a FORALL statement will require communication between the available

processors.

REAL a(n), b(n)

!HPF$ DISTRIBUTE (BLOCK) :: a, b

...

FORALL (i=2:n-1)

a(i) = (b(i+1) + b(i-1) + 2. * b(i)) * .25

END FORALL

In contrary to the local independent loops, required communication for data is re-

cognized and communication statements will be generated.

25

9.4 FORALL Statements with Array Statements

It is possible to use array statements within the FORALL loops.

REAL a(n)

!HPF$ DISTRIBUTE a(BLOCK)

...

FORALL (i=1:n) h(1:i,i) = a(1:i,i)

Usually array statements will be no problem if they can be translated to forall or

do loops. But Adaptor will impose some restrictions if intrinsic array functions are

used, e.g. the following loop will not be translated.

c not allowed for Adaptor are array assignments in FORALL

FORALL (i=1:n, j=1:n) h(1:i,1:j) = TRANSPOSE (a(1:j,1:i))

10 Intrinsic Array Functions

The Fortran 77 intrinsic functions are extended to array operations and some in-

trinsics are new with array operations. Inquiry intrinsic functions cannot be used

within Adaptor.

10.1 Elemental Intrinsic Functions

The elemental intrinsic functions are the same as supported for scalar processing.

For array processing, at least one of the arguments is an array and the result is an

array. All arguments and the result must be conformable.

The new elemental intrinsic function MERGE choosing one of two given values depen-

ding on a mask is not supported.

REAL a(n), b(n)

a = SQRT (b)

a = SIN(b) + COS(b)

a(1:n:2) = SIN(b(1:n:2))

10.2 Reductions

The following reduction functions are supported by Adaptor: ALL, ANY, COUNT, IALL,

IANY, IPARITY, SUM, PRODUCT, PARITY, MINVAL and MAXVAL.

In contrary to a previous version, now mask and dim parameters in the reductions

are also allowed.

26

REAL a(n), ha(n), ra(n)

REAL g

CMF$ LAYOUT a(:NEWS) ! a is distributed

CMF$ LAYOUT ha(:HOST) ! ha is a host array

CMF$ LAYOUT ra(:SERIAL) ! ra is a replicated array

g = SUM(a) ! global reduction to a replicated variable

g = SUM(a(5:n)) ! global reduction to a replicated variable

10.3 Shifting, Transpose

Adaptor supports circular shifting and transposing only for whole arrays. These

functions have been already discussed in section 5.1 and 5.2.

10.4 Transformational Intrinsic Functions

The transformational intrinsic functions produce results with a di�erent shape than

the arguments.

� spread, diagonal, pack, unpack, replicate, reshape

� matmul

The current version of Adaptor supports only the spread function. All other functions

result in translation errors and cannot be used.

REAL a(n), b(m,n), g

...

b = SPREAD (SPREAD(g,1,n),1,m)

b = SPREAD (a,1,m)

11 Dynamic Arrays

Adaptor supports two kinds of dynamic arrays:

� Allocatable arrays - explicit allocation (by allocate statement) and deallocation

(by deallocate statement)

� Automatic arrays - automatic allocation (upon entry to the de�ning subpro-

gram) and deallocation (on return).

It should be observed that for complex array statements Adaptor generates implicit

allocations and deallocations for temporary arrays.

27

11.1 Allocatable Arrays

An allocatable array is always local (it cannot be a dummy argument or be declared

in common). It can be allocated and deallocated only locally. This kind of array will

be used if user input speci�es the size of the arrays at runtime.

REAL a(:), b(:)

READ *, n

IF (n .GT. 0) THEN

ALLOCATE (a(n), b(n))

...

DEALLOCATE (b, a)

END IF

Dynamic arrays are always stored on the stack. Therefore the following rules have

to be observed:

� an allocatable array must be currently allocated when it is passed as an actual

argument to a subroutine,

� allocation is necessary before the �rst use,

� if a dynamic array is deallocated all arrays that have been allocated later will

also be deallocated.

11.2 Automatic Arrays

An automatic array can appear only in a subprogram. It looks similar to a static

array but the bounds are speci�ed as dummy arguments or elements of a common

block. In any case, an automatic array is not a dummy array and not part of a

common block.

SUBROUTINE s (n)

REAL a(n), b(n)

...

a(2:n) = b(1:n-1)

12 Random Numbers

Similar to CM Fortran, Adaptor supports the generation of random numbers by

using a parallelized random number generator.

� cmf randomize initializes the random number generated with a seed value

28

� cmf random generates random numbers for whole integer, real or double pre-

cision arrays

PROGRAM p

REAL x(100)

INTEGER na(100)

CALL CMF_RANDOMIZE(54) ! 54 is seed for random function

CALL CMF_RANDOM (x) ! assigns a random value to each element of x

CALL CMF_RANDOM (na,50) ! random values in range of 0 to 49

...

END

13 Timing

Adaptor generates very e�cient code for well written data parallel programs. To

prove this on your own, the following subroutines can be used to make time measu-

rements:

� cm timer clear, cm timer start, cm timer stop, cm timer print give the

possibility for machine independent timing.

� walltime gives access to the time since the program has started.

PROGRAM p

REAL s1, s2 ! replicated scalar variables

...

CALL CM_TIMER_CLEAR (0)

CALL CM_TIMER_START (0)

c code to be measured

...

CALL CM_TIMER_STOP (0)

CALL CM_TIMER_PRINT (0)

...

CALL WALLTIME (S1)

CALL s(...)

CALL WALLTIME (S2)

print *, 'Execution of S needs ', S2-S1, ' seconds.'

14 I/O Operations

The central idea for I/O statements is that these statements are only executed by the

host (Host-Node programming model) or by the �rst node (Only-Node programming

model).

29

Every replicated variable that might be changed by an I/O statement is broadcast

to all processors. I/O is not allowed for distributed variables.

When the necessity comes up to read in or to write distributed arrays, this should

be done with the help of host arrays.

REAL a(n,n), ha(n,n)

!HPF$ DISTRIBUTE a(*,BLOCK)

CMF$ LAYOUT ha(:HOST)

READ *, ha ! read in host array

a = ha ! distribute it to nodes

... ! parallel operations on distributed array

ha = a ! collect distributed array to host

PRINT *, ha ! output of the host array

Here is a solution with replicated arrays.

REAL a(n,n), ra(n)

!HPF$ DISTRIBUTE a(*,BLOCK)

!HPF$ DISTRIBUTE ra(*)

DO i = 1, n

READ *, ra ! read in column i of a

a(:,i) = ra ! send it to process that owns a(:,i)

END DO

...

DO i = 1, n

ra = a(:,i) ! broadcast

PRINT *, ra

END DO

15 User Subprograms

Subprograms are absolutely necessary to structure bigger programs. A user subrou-

tine is a subprogram that has been speci�ed by the user and is available during the

source-to-source translation. In contrary to an external subprogram, every processor

runs into the subprogram.

15.1 Semantic of a User Subprogram

If the source program calls a user-de�ned subprogram, the generated host and node

program will call this subprogram, too.

By this way it is possible that a subprogram can also have distributed arrays, parallel

loops and implicit communication like the main program.

30

PROGRAM p

CALL s() ! s will be called by every process

CALL t() ! t will be called by every process

END

SUBROUTINE s ()

REAL a(n)

!HPF$ DISTRIBUTE a(block)

...

END

SUBROUTINE t ()

REAL b(n), c(n)

!HPF$ DISTRIBUTE b(block)

!HPF$ DISTRIBUTE c(*)

...

END

Common blocks can be used for global data without any problems. But if the com-

mon block contains distributed arrays all occurrences must have the same occurrence

as described in 3.3.1.

15.2 Array Dummy Arguments of a Subprogram

The following general restrictions for dummy arguments are given:

� actual arrays are referenced by a pointer to the �rst element

� actual arrays cannot be array expressions

� assumed-shaped dummy arrays are not supported

PROGRAM p

REAL x(100)

CALL s (x) ! allowed subprogram call

CALL s (x+1) ! array expressions are not allowed

...

END

SUBROUTINE s (a)

C REAL a(:) ! assumed-shaped arrays are not supported

REAL a(100) ! this is okay

...

END

31

15.3 Distributed Dummy Arguments of a Subprogram

Distributed arrays can be actual or dummy parameters of a subprogram, too.

SUBROUTINE doit (a, ha, ra, n, m)

INTEGER n, m

REAL a(n,m), ha(n,m), ra(n,m)

CMF$ LAYOUT ha(:HOST), ra(:SERIAL,:SERIAL)

!HPF$ DISTRIBUTE a(*,BLOCK)

...

END

But the following restrictions have to be observed for distributed actual or dummy

arrays:

� Actual and dummy array must have the same layout.

� If a distributed array is an actual array, the whole array will have to be the

actual parameter.

� Assumed-sized dummy arrays cannot be distributed arrays.

� Arrays with overlap area cannot be actual or dummy arrays.

PROGRAM P

INTEGER n, m

REAL a(n,m), ha(n,m), ra(n,m)

CMF$ LAYOUT ha(:HOST), ra(:SERIAL,:SERIAL)

!HPF$ DISTRIBUTE a(*,BLOCK)

CALL doit (a, ha, ra, n, m) ! absolutely okay

CALL doit (a, ha, ra(2,4), n, m) ! okay, ra replicated

CALL doit (a(2,4), ha, ra, n, m) ! wrong, a distributed

CALL doit (a, ra, ha, n, m) ! wrong, ha/ra wrong layout

END

16 Pure Subprograms

In contrary to the user subprograms a pure subprogram can be called independently

by di�erent processors. It is assumed that a pure subprogram has only access to

its own local data and does not have any side e�ects. No communication will be

generated.

32

16.1 Syntax and Constraints

Pure subroutines must have the keyword PURE.

PURE REAL FUNCTION f (x1, x2)

REAL x1, x2

f = (x1 - 1) * (x2 + 1)

END

PURE SUBROUTINE x (a, b, c)

REAL a, b, c

c = (a - 1) * (b + 1)

END

A pure subroutine should not contain any distributed array. The actual arguments

of a pure subprogram can be values from replicated data, host data or distributed

data. But it must be guaranteed that one process owns all data of the arguments.

New local data within a subroutine will have an own incarnation on every processor.

Therefore the SAVE statement is not allowed.

A pure subroutine must not have any I/O-Operations.

16.2 Use of Pure Subprograms

Pure subroutines and pure functions can be used within parallel loops.

REAL FUNCTION f (x1, x2)

REAL x1, x2

f = (x1 - 1) * (x2 + 1)

END

REAL a(n,m), ra(n,m)

INTEGER n, m

CMF$ LAYOUT ra(:SERIAL,:SERIAL)

FORALL (i=1:n,j=1:m)

a(i,j) = f(a(i,j), ra(i,j))

END FORALL

SUBROUTINE s(i, x)

INTEGER i

REAL x

...

END

PROGRAM p

33

REAL a(n)

!HPF$ DISTRIBUTE a(BLOCK)

...

!HPF$ INDEPENDENT, LOCAL_ACCESS

DO i = 1, n

a(i) = 1.0

CALL s(i, a(i))

END DO

It is possible to call pure subprograms with replicated data. But an update is done

only on the local incarnation of the variable.

16.3 Realization of Pure Subprograms

The di�erence between a pure subroutine and a user subroutine for the source-to-

source translation is that

� no temporary variables have to be created,

� and no communication must be generated.

Access to local data will cause no problems in a pure subprogram. The following

kind of application with a pure subprogram is quite useful:

PURE SUBROUTINE p (i)

INTEGER i

COMMON /yom/ a

REAL a(100)

!HPF$ DISTRIBUTE a(BLOCK)

REAL x

x = a(i) + 1.0 ! no broadcast of a(i) required

a(i) = x ! a(i) is local data by assertion

END

By this way it is possible to work independently on local data of a common block.

17 External Subprograms

External subroutines are called only by the host program. Therefore the use of

external subroutines is very similar to the idea of I/O-statements.

A subroutine must not have a distributed array as an actual parameter. If one actual

parameter is a replicated variable that could have been modi�ed, the replicated

values on the nodes will be updated by a broadcast.

34

It should be observed that a modi�cation of common variables in an external sub-

routine has only an e�ect for the host values.

The call of external functions is not supported in the current version.

18 Example Program: Jacobi Iteration

18.1 Using Array Syntax

PROGRAM LAPLACE

REAL F(:,:), DF(:,:)

LOGICAL CMASK (:,:)

INTEGER MAXX, MAXY

REAL FMAX

INTEGER ITER

c

c read in sizes

c

PRINT *,'MAXX = (e.g. 64) '

READ *,MAXX

PRINT *,'MAXY = (e.g. 64) '

READ *,MAXY

ALLOCATE (F(MAXX,MAXY),DF(MAXX,MAXY),CMASK(MAXX,MAXY))

C

CMASK = .FALSE.

CMASK (2:MAXX-1,2:MAXY-1) = .TRUE.

F = 2.

F(:,MAXY) = 1.

WHERE (CMASK)

F = 0.0

ENDWHERE

ITER = 0

FMAX = 1

DO WHILE (FMAX .gt. 0.001)

ITER = ITER + 1

DF = (CSHIFT (F,1,1) + CSHIFT (F,1,-1) +

& CSHIFT (F,2,1) + CSHIFT (F,2,-1)) * 0.25 - F

WHERE (CMASK)

F = F + DF

ELSEWHERE

DF = 0.0

ENDWHERE

DF = ABS(DF)

FMAX = MAXVAL (DF)

PRINT *,'Iteration ',ITER,' Max = ',FMAX

END DO

PRINT *, ITER, ' iterations needed'

DEALLOCATE (CMASK, DF, F)

END

18.2 Using FORALL Statements

The following solution uses FORALL statements.

PROGRAM LAPLACE

REAL F(:,:), DF(:,:)

INTEGER MAXX, MAXY

35

REAL FMAX

INTEGER ITER

c

c read in sizes

c

PRINT *,'MAXX = (e.g. 64) '

READ *,MAXX

PRINT *,'MAXY = (e.g. 64) '

READ *,MAXY

ALLOCATE (F(MAXX,MAXY),DF(MAXX,MAXY))

C

F = 2.

F(:,MAXY) = 1.

F(2:MAXX-1,2:MAXY-1) = 0.0

ITER = 0

FMAX = 1

DO WHILE (FMAX .gt. 0.001)

ITER = ITER + 1

FORALL (J=2:MAXY-1, I=2:MAXX-1)

DF(I,J) = (F(I,J+1) + F(I,J-1) +

& F(I-1,J) + F(I+1,J)) * 0.25 - F(I,J)

END FORALL

FORALL (I=2:MAXX-1,J=2:MAXY-1)

F(I,J) = F(I,J) + DF(I,J)

END FORALL

DF = ABS(DF)

FMAX = MAXVAL (DF)

PRINT *,'Iteration ',ITER,' Max = ',FMAX

END DO

PRINT *, ITER, ' iterations needed'

DEALLOCATE (DF, F)

END

18.3 Using Overlapping

The following solution uses a help array with an overlap area. The great advantage

is that the FORALL statement computing DF needs no temporaries and no further

communication. Therefore this solution is much more faster than the previous ones.

PROGRAM LAPLACE

REAL F(:,:), DF(:,:), HF(:,:[1:1])

INTEGER MAXX, MAXY

REAL FMAX

INTEGER ITER

c

c read in sizes

c

PRINT *,'MAXX = (e.g. 64) '

READ *,MAXX

PRINT *,'MAXY = (e.g. 64) '

READ *,MAXY

ALLOCATE (F(MAXX,MAXY),DF(MAXX,MAXY),HF(MAXX,MAXY))

C

F = 2.

F(:,MAXY) = 1.

F(2:MAXX-1,2:MAXY-1) = 0.0

ITER = 0

FMAX = 1

DO WHILE (FMAX .gt. 0.001)

ITER = ITER + 1

HF = F ! makes boundaries of F local

FORALL (J=2:MAXY-1, I=2:MAXX-1)

36

DF(I,J) = (HF(I,J+1) + HF(I,J-1) +

& HF(I-1,J) + HF(I+1,J)) * 0.25 - HF(I,J)

END FORALL

FORALL (I=2:MAXX-1,J=2:MAXY-1)

F(I,J) = F(I,J) + DF(I,J)

END FORALL

DF = ABS(DF)

FMAX = MAXVAL (DF)

PRINT *,'Iteration ',ITER,' Max = ',FMAX

END DO

PRINT *, ITER, ' iterations needed'

DEALLOCATE (HF, DF, F)

END

References

[ALS91] E. Albert, J.D. Lukas, and G.L. Steele. Data Parallel Computers and

the FORALL Statement. Journal of Parallel and Distributed Computing,

1(1):1{1, October 1991.

[Hig93] High Perforamnce Fortran Forum. High Performance Fortran Language

Speci�cation. Final Version 1.0, Department of Computer Science, Rice

University, May 1993.

[Lov92] D. Loveman. Element Array Assignment - the FORALL Statement. In Pro-

ceedings of Third Workshop on Compilers for Parallel Computers, Vienna

Austria, July 6-9, pages 109{120, 1992.

[Thi91] Thinking Machines Corporation. CM Fortran Programming Guide, Version

1.0. Manual, TMC, January 1991.

[WSG92] M.YWu, W. Shu, and Fox G.C. DO and FORALL: Temporal and Spatial

Control Structures. In Proceedings of Third Workshop on Compilers for

Parallel Computers, Vienna, Austria, July 6-9, pages 258{269, 1992.

37

